# Copyright (c) Streamlit Inc. (2018-2022) Snowflake Inc. (2022-2025)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Utilities for our built-in charts commands."""

from __future__ import annotations

from collections.abc import Collection, Hashable, Sequence
from dataclasses import dataclass
from datetime import date
from enum import Enum
from typing import (
    TYPE_CHECKING,
    Any,
    Final,
    Literal,
    TypedDict,
    cast,
)

from typing_extensions import TypeAlias

from streamlit import dataframe_util, type_util
from streamlit.elements.lib.color_util import (
    Color,
    is_color_like,
    is_color_tuple_like,
    is_hex_color_like,
    to_css_color,
)
from streamlit.errors import Error, StreamlitAPIException

if TYPE_CHECKING:
    import altair as alt
    import pandas as pd

    from streamlit.dataframe_util import Data

VegaLiteType: TypeAlias = Literal["quantitative", "ordinal", "temporal", "nominal"]
ChartStackType: TypeAlias = Literal["normalize", "center", "layered"]


class PrepDataColumns(TypedDict):
    """Columns used for the prep_data step in Altair Arrow charts."""

    x_column: str | None
    y_column_list: list[str]
    color_column: str | None
    size_column: str | None


@dataclass
class AddRowsMetadata:
    """Metadata needed by add_rows on native charts.

    This class is used to pass some important info to add_rows.
    """

    chart_command: str
    last_index: Hashable | None
    columns: PrepDataColumns


class ChartType(Enum):
    AREA = {"mark_type": "area", "command": "area_chart"}
    VERTICAL_BAR = {"mark_type": "bar", "command": "bar_chart", "horizontal": False}
    HORIZONTAL_BAR = {"mark_type": "bar", "command": "bar_chart", "horizontal": True}
    LINE = {"mark_type": "line", "command": "line_chart"}
    SCATTER = {"mark_type": "circle", "command": "scatter_chart"}


# Color and size legends need different title paddings in order for them
# to be vertically aligned.
#
# NOTE: I don't think it's possible to *perfectly* align the size and
# color legends in all instances, since the "size" circles vary in size based
# on the data, and their container is top-aligned with the color container. But
# through trial-and-error I found this value to be a good enough middle ground.
#
# NOTE #2: In theory, we could move COLOR_LEGEND_SETTINGS into
# ArrowVegaLiteChart/CustomTheme.tsx, but this would impact existing behavior.
# (See https://github.com/streamlit/streamlit/pull/7164#discussion_r1307707345)
_COLOR_LEGEND_SETTINGS: Final = {"titlePadding": 5, "offset": 5, "orient": "bottom"}
_SIZE_LEGEND_SETTINGS: Final = {"titlePadding": 0.5, "offset": 5, "orient": "bottom"}

# User-readable names to give the index and melted columns.
_SEPARATED_INDEX_COLUMN_TITLE: Final = "index"
_MELTED_Y_COLUMN_TITLE: Final = "value"
_MELTED_COLOR_COLUMN_TITLE: Final = "color"

# Crazy internal (non-user-visible) names for the index and melted columns, in order to
# avoid collision with existing column names. The suffix below was generated with an
# online random number generator. Rationale: because it makes it even less likely to
# lead to a conflict than something that's human-readable (like "--streamlit-fake-field"
# or something).
_PROTECTION_SUFFIX: Final = "--p5bJXXpQgvPz6yvQMFiy"
_SEPARATED_INDEX_COLUMN_NAME: Final = _SEPARATED_INDEX_COLUMN_TITLE + _PROTECTION_SUFFIX
_MELTED_Y_COLUMN_NAME: Final = _MELTED_Y_COLUMN_TITLE + _PROTECTION_SUFFIX
_MELTED_COLOR_COLUMN_NAME: Final = _MELTED_COLOR_COLUMN_TITLE + _PROTECTION_SUFFIX

# Name we use for a column we know doesn't exist in the data, to address a Vega-Lite rendering bug
# where empty charts need x, y encodings set in order to take up space.
_NON_EXISTENT_COLUMN_NAME: Final = "DOES_NOT_EXIST" + _PROTECTION_SUFFIX


def maybe_raise_stack_warning(
    stack: bool | ChartStackType | None, command: str | None, docs_link: str
):
    # Check that the stack parameter is valid, raise more informative error message if not
    if stack not in (None, True, False, "normalize", "center", "layered"):
        raise StreamlitAPIException(
            f'Invalid value for stack parameter: {stack}. Stack must be one of True, False, "normalize", "center", "layered" or None. '
            f"See documentation for `{command}` [here]({docs_link}) for more information."
        )


def generate_chart(
    chart_type: ChartType,
    data: Data | None,
    x_from_user: str | None = None,
    y_from_user: str | Sequence[str] | None = None,
    x_axis_label: str | None = None,
    y_axis_label: str | None = None,
    color_from_user: str | Color | list[Color] | None = None,
    size_from_user: str | float | None = None,
    width: int | None = None,
    height: int | None = None,
    # Bar & Area charts only:
    stack: bool | ChartStackType | None = None,
) -> tuple[alt.Chart | alt.LayerChart, AddRowsMetadata]:
    """Function to use the chart's type, data columns and indices to figure out the chart's spec."""
    import altair as alt

    df = dataframe_util.convert_anything_to_pandas_df(data, ensure_copy=True)

    # From now on, use "df" instead of "data". Deleting "data" to guarantee we follow this.
    del data

    # Convert arguments received from the user to things Vega-Lite understands.
    # Get name of column to use for x.
    x_column = _parse_x_column(df, x_from_user)
    # Get name of columns to use for y.
    y_column_list = _parse_y_columns(df, y_from_user, x_column)
    # Get name of column to use for color, or constant value to use. Any/both could be None.
    color_column, color_value = _parse_generic_column(df, color_from_user)
    # Get name of column to use for size, or constant value to use. Any/both could be None.
    size_column, size_value = _parse_generic_column(df, size_from_user)

    # Store some info so we can use it in add_rows.
    add_rows_metadata = AddRowsMetadata(
        # The st command that was used to generate this chart.
        chart_command=chart_type.value["command"],
        # The last index of df so we can adjust the input df in add_rows:
        last_index=_last_index_for_melted_dataframes(df),
        # This is the input to prep_data (except for the df):
        columns={
            "x_column": x_column,
            "y_column_list": y_column_list,
            "color_column": color_column,
            "size_column": size_column,
        },
    )

    # At this point, all foo_column variables are either None/empty or contain actual
    # columns that are guaranteed to exist.

    df, x_column, y_column, color_column, size_column = _prep_data(
        df, x_column, y_column_list, color_column, size_column
    )

    # At this point, x_column is only None if user did not provide one AND df is empty.

    # Get x and y encodings
    x_encoding, y_encoding = _get_axis_encodings(
        df,
        chart_type,
        x_column,
        y_column,
        x_from_user,
        y_from_user,
        x_axis_label,
        y_axis_label,
        stack,
    )

    # Create a Chart with x and y encodings.
    chart = alt.Chart(
        data=df,
        mark=chart_type.value["mark_type"],
        width=width or 0,
        height=height or 0,
    ).encode(
        x=x_encoding,
        y=y_encoding,
    )

    # Offset encoding only works for Altair >= 5.0.0
    is_altair_version_5_or_greater = not type_util.is_altair_version_less_than("5.0.0")
    # Set up offset encoding (creates grouped/non-stacked bar charts, so only applicable
    # when stack=False).
    if is_altair_version_5_or_greater and stack is False and color_column is not None:
        x_offset, y_offset = _get_offset_encoding(chart_type, color_column)
        chart = chart.encode(xOffset=x_offset, yOffset=y_offset)

    # Set up opacity encoding.
    opacity_enc = _get_opacity_encoding(chart_type, stack, color_column)
    if opacity_enc is not None:
        chart = chart.encode(opacity=opacity_enc)

    # Set up color encoding.
    color_enc = _get_color_encoding(
        df, color_value, color_column, y_column_list, color_from_user
    )
    if color_enc is not None:
        chart = chart.encode(color=color_enc)

    # Set up size encoding.
    size_enc = _get_size_encoding(chart_type, size_column, size_value)
    if size_enc is not None:
        chart = chart.encode(size=size_enc)

    # Set up tooltip encoding.
    if x_column is not None and y_column is not None:
        chart = chart.encode(
            tooltip=_get_tooltip_encoding(
                x_column,
                y_column,
                size_column,
                color_column,
                color_enc,
            )
        )

    if (
        chart_type is ChartType.LINE
        and x_column is not None
        # This is using the new selection API that was added in Altair 5.0.0
        and is_altair_version_5_or_greater
    ):
        return _add_improved_hover_tooltips(
            chart, x_column, width, height
        ).interactive(), add_rows_metadata

    return chart.interactive(), add_rows_metadata


def _add_improved_hover_tooltips(
    chart: alt.Chart, x_column: str, width: int | None, height: int | None
) -> alt.LayerChart:
    """Adds improved hover tooltips to an existing line chart."""

    import altair as alt

    # Create a selection that chooses the nearest point & selects based on x-value
    nearest = alt.selection_point(
        nearest=True,
        on="pointerover",
        fields=[x_column],
        empty=False,
        clear="pointerout",
    )

    # Draw points on the line, and highlight based on selection
    points = (
        chart.mark_point(filled=True, size=65)
        .encode(opacity=alt.condition(nearest, alt.value(1), alt.value(0)))
        .add_params(nearest)
    )

    layer_chart = (
        alt.layer(chart, points)
        .configure_legend(symbolType="stroke")
        .properties(
            width=width or 0,
            height=height or 0,
        )
    )

    return cast(alt.LayerChart, layer_chart)


def prep_chart_data_for_add_rows(
    data: Data,
    add_rows_metadata: AddRowsMetadata,
) -> tuple[Data, AddRowsMetadata]:
    """Prepares the data for add_rows on our built-in charts.

    This includes aspects like conversion of the data to Pandas DataFrame,
    changes to the index, and melting the data if needed.
    """
    import pandas as pd

    df = cast(pd.DataFrame, dataframe_util.convert_anything_to_pandas_df(data))

    # Make range indices start at last_index.
    if isinstance(df.index, pd.RangeIndex):
        old_step = _get_pandas_index_attr(df, "step")

        # We have to drop the predefined index
        df = df.reset_index(drop=True)

        old_stop = _get_pandas_index_attr(df, "stop")

        if old_step is None or old_stop is None:
            raise StreamlitAPIException("'RangeIndex' object has no attribute 'step'")

        start = add_rows_metadata.last_index + old_step
        stop = add_rows_metadata.last_index + old_step + old_stop

        df.index = pd.RangeIndex(start=start, stop=stop, step=old_step)
        add_rows_metadata.last_index = stop - 1

    out_data, *_ = _prep_data(df, **add_rows_metadata.columns)

    return out_data, add_rows_metadata


def _infer_vegalite_type(
    data: pd.Series[Any],
) -> VegaLiteType:
    """
    From an array-like input, infer the correct vega typecode
    ('ordinal', 'nominal', 'quantitative', or 'temporal')

    Parameters
    ----------
    data: Numpy array or Pandas Series
    """
    # The code below is copied from Altair, and slightly modified.
    # We copy this code here so we don't depend on private Altair functions.
    # Source: https://github.com/altair-viz/altair/blob/62ca5e37776f5cecb27e83c1fbd5d685a173095d/altair/utils/core.py#L193

    from pandas.api.types import infer_dtype

    # STREAMLIT MOD: I'm using infer_dtype directly here, rather than using Altair's wrapper. Their
    # wrapper is only there to support Pandas < 0.20, but Streamlit requires Pandas 1.3.
    typ = infer_dtype(data)

    if typ in [
        "floating",
        "mixed-integer-float",
        "integer",
        "mixed-integer",
        "complex",
    ]:
        return "quantitative"

    elif typ == "categorical" and data.cat.ordered:
        # STREAMLIT MOD: The original code returns a tuple here:
        # return ("ordinal", data.cat.categories.tolist())
        # But returning the tuple here isn't compatible with our
        # built-in chart implementation. And it also doesn't seem to be necessary.
        # Altair already extracts the correct sort order somewhere else.
        # More info about the issue here: https://github.com/streamlit/streamlit/issues/7776
        return "ordinal"
    elif typ in ["string", "bytes", "categorical", "boolean", "mixed", "unicode"]:
        return "nominal"
    elif typ in [
        "datetime",
        "datetime64",
        "timedelta",
        "timedelta64",
        "date",
        "time",
        "period",
    ]:
        return "temporal"
    else:
        # STREAMLIT MOD: I commented this out since Streamlit doesn't have a warnings object.
        # warnings.warn(
        #     "I don't know how to infer vegalite type from '{}'.  "
        #     "Defaulting to nominal.".format(typ),
        #     stacklevel=1,
        # )
        return "nominal"


def _get_pandas_index_attr(
    data: pd.DataFrame | pd.Series,
    attr: str,
) -> Any | None:
    return getattr(data.index, attr, None)


def _prep_data(
    df: pd.DataFrame,
    x_column: str | None,
    y_column_list: list[str],
    color_column: str | None,
    size_column: str | None,
) -> tuple[pd.DataFrame, str | None, str | None, str | None, str | None]:
    """Prepares the data for charting. This is also used in add_rows.

    Returns the prepared dataframe and the new names of the x column (taking the index reset into
    consideration) and y, color, and size columns.
    """

    # If y is provided, but x is not, we'll use the index as x.
    # So we need to pull the index into its own column.
    x_column = _maybe_reset_index_in_place(df, x_column, y_column_list)

    # Drop columns we're not using.
    selected_data = _drop_unused_columns(
        df, x_column, color_column, size_column, *y_column_list
    )

    # Maybe convert color to Vega colors.
    _maybe_convert_color_column_in_place(selected_data, color_column)

    # Make sure all columns have string names.
    (
        x_column,
        y_column_list,
        color_column,
        size_column,
    ) = _convert_col_names_to_str_in_place(
        selected_data, x_column, y_column_list, color_column, size_column
    )

    # Maybe melt data from wide format into long format.
    melted_data, y_column, color_column = _maybe_melt(
        selected_data, x_column, y_column_list, color_column, size_column
    )

    # Return the data, but also the new names to use for x, y, and color.
    return melted_data, x_column, y_column, color_column, size_column


def _last_index_for_melted_dataframes(
    data: pd.DataFrame,
) -> Hashable | None:
    return cast(Hashable, data.index[-1]) if data.index.size > 0 else None


def _is_date_column(df: pd.DataFrame, name: str | None) -> bool:
    """True if the column with the given name stores datetime.date values.

    This function just checks the first value in the given column, so
    it's meaningful only for columns whose values all share the same type.

    Parameters
    ----------
    df : pd.DataFrame
    name : str
        The column name

    Returns
    -------
    bool

    """
    if name is None:
        return False

    column = df[name]
    if column.size == 0:
        return False

    return isinstance(column.iloc[0], date)


def _melt_data(
    df: pd.DataFrame,
    columns_to_leave_alone: list[str],
    columns_to_melt: list[str] | None,
    new_y_column_name: str,
    new_color_column_name: str,
) -> pd.DataFrame:
    """Converts a wide-format dataframe to a long-format dataframe.

    You can find more info about melting on the Pandas documentation:
    https://pandas.pydata.org/docs/reference/api/pandas.melt.html

    Parameters
    ----------
    df : pd.DataFrame
        The dataframe to melt.
    columns_to_leave_alone : list[str]
        The columns to leave as they are.
    columns_to_melt : list[str]
        The columns to melt.
    new_y_column_name : str
        The name of the new column that will store the values of the melted columns.
    new_color_column_name : str
        The name of column that will store the original column names.

    Returns
    -------
    pd.DataFrame
        The melted dataframe.


    Examples
    --------

    >>> import pandas as pd
    >>> df = pd.DataFrame(
    ...     {
    ...         "a": [1, 2, 3],
    ...         "b": [4, 5, 6],
    ...         "c": [7, 8, 9],
    ...     }
    ... )
    >>> _melt_data(df, ["a"], ["b", "c"], "value", "color")
    >>>    a color  value
    >>> 0  1        b      4
    >>> 1  2        b      5
    >>> 2  3        b      6
    >>> ...

    """
    import pandas as pd
    from pandas.api.types import infer_dtype

    melted_df = pd.melt(
        df,
        id_vars=columns_to_leave_alone,
        value_vars=columns_to_melt,
        var_name=new_color_column_name,
        value_name=new_y_column_name,
    )

    y_series = melted_df[new_y_column_name]
    if (
        y_series.dtype == "object"
        and "mixed" in infer_dtype(y_series)
        and len(y_series.unique()) > 100
    ):
        raise StreamlitAPIException(
            "The columns used for rendering the chart contain too many values with mixed types. Please select the columns manually via the y parameter."
        )

    # Arrow has problems with object types after melting two different dtypes
    # pyarrow.lib.ArrowTypeError: "Expected a <TYPE> object, got a object"
    fixed_df = dataframe_util.fix_arrow_incompatible_column_types(
        melted_df,
        selected_columns=[
            *columns_to_leave_alone,
            new_color_column_name,
            new_y_column_name,
        ],
    )

    return fixed_df


def _maybe_reset_index_in_place(
    df: pd.DataFrame, x_column: str | None, y_column_list: list[str]
) -> str | None:
    if x_column is None and len(y_column_list) > 0:
        if df.index.name is None:
            # Pick column name that is unlikely to collide with user-given names.
            x_column = _SEPARATED_INDEX_COLUMN_NAME
        else:
            # Reuse index's name for the new column.
            x_column = df.index.name

        df.index.name = x_column
        df.reset_index(inplace=True)

    return x_column


def _drop_unused_columns(df: pd.DataFrame, *column_names: str | None) -> pd.DataFrame:
    """Returns a subset of df, selecting only column_names that aren't None."""

    # We can't just call set(col_names) because sets don't have stable ordering,
    # which means tests that depend on ordering will fail.
    # Performance-wise, it's not a problem, though, since this function is only ever
    # used on very small lists.
    seen = set()
    keep = []

    for x in column_names:
        if x is None:
            continue
        if x in seen:
            continue
        seen.add(x)
        keep.append(x)

    return df[keep]


def _maybe_convert_color_column_in_place(df: pd.DataFrame, color_column: str | None):
    """If needed, convert color column to a format Vega understands."""
    if color_column is None or len(df[color_column]) == 0:
        return

    first_color_datum = df[color_column].iat[0]

    if is_hex_color_like(first_color_datum):
        # Hex is already CSS-valid.
        pass
    elif is_color_tuple_like(first_color_datum):
        # Tuples need to be converted to CSS-valid.
        df.loc[:, color_column] = df[color_column].map(to_css_color)
    else:
        # Other kinds of colors columns (i.e. pure numbers or nominal strings) shouldn't
        # be converted since they are treated by Vega-Lite as sequential or categorical colors.
        pass


def _convert_col_names_to_str_in_place(
    df: pd.DataFrame,
    x_column: str | None,
    y_column_list: list[str],
    color_column: str | None,
    size_column: str | None,
) -> tuple[str | None, list[str], str | None, str | None]:
    """Converts column names to strings, since Vega-Lite does not accept ints, etc."""
    import pandas as pd

    column_names = list(df.columns)  # list() converts RangeIndex, etc, to regular list.
    str_column_names = [str(c) for c in column_names]
    df.columns = pd.Index(str_column_names)

    return (
        None if x_column is None else str(x_column),
        [str(c) for c in y_column_list],
        None if color_column is None else str(color_column),
        None if size_column is None else str(size_column),
    )


def _parse_generic_column(
    df: pd.DataFrame, column_or_value: Any
) -> tuple[str | None, Any]:
    if isinstance(column_or_value, str) and column_or_value in df.columns:
        column_name = column_or_value
        value = None
    else:
        column_name = None
        value = column_or_value

    return column_name, value


def _parse_x_column(df: pd.DataFrame, x_from_user: str | None) -> str | None:
    if x_from_user is None:
        return None

    elif isinstance(x_from_user, str):
        if x_from_user not in df.columns:
            raise StreamlitColumnNotFoundError(df, x_from_user)

        return x_from_user

    else:
        raise StreamlitAPIException(
            "x parameter should be a column name (str) or None to use the "
            f" dataframe's index. Value given: {x_from_user} "
            f"(type {type(x_from_user)})"
        )


def _parse_y_columns(
    df: pd.DataFrame,
    y_from_user: str | Sequence[str] | None,
    x_column: str | None,
) -> list[str]:
    y_column_list: list[str] = []

    if y_from_user is None:
        y_column_list = list(df.columns)

    elif isinstance(y_from_user, str):
        y_column_list = [y_from_user]

    else:
        y_column_list = [
            str(col) for col in dataframe_util.convert_anything_to_list(y_from_user)
        ]

    for col in y_column_list:
        if col not in df.columns:
            raise StreamlitColumnNotFoundError(df, col)

    # y_column_list should only include x_column when user explicitly asked for it.
    if x_column in y_column_list and (not y_from_user or x_column not in y_from_user):
        y_column_list.remove(x_column)

    return y_column_list


def _get_offset_encoding(
    chart_type: ChartType,
    color_column: str | None,
) -> tuple[alt.XOffset, alt.YOffset]:
    # Vega's Offset encoding channel is used to create grouped/non-stacked bar charts
    import altair as alt

    x_offset = alt.XOffset()
    y_offset = alt.YOffset()

    _color_column: str | alt.UndefinedType = (
        color_column if color_column is not None else alt.utils.Undefined
    )

    if chart_type is ChartType.VERTICAL_BAR:
        x_offset = alt.XOffset(field=_color_column)
    elif chart_type is ChartType.HORIZONTAL_BAR:
        y_offset = alt.YOffset(field=_color_column)

    return x_offset, y_offset


def _get_opacity_encoding(
    chart_type: ChartType,
    stack: bool | ChartStackType | None,
    color_column: str | None,
) -> alt.OpacityValue | None:
    import altair as alt

    # Opacity set to 0.7 for all area charts
    if color_column and chart_type == ChartType.AREA:
        return alt.OpacityValue(0.7)

    # Layered bar chart
    if color_column and stack == "layered":
        return alt.OpacityValue(0.7)

    return None


def _get_axis_config(df: pd.DataFrame, column_name: str | None, grid: bool) -> alt.Axis:
    import altair as alt
    from pandas.api.types import is_integer_dtype

    if column_name is not None and is_integer_dtype(df[column_name]):
        # Use a max tick size of 1 for integer columns (prevents zoom into float numbers)
        # and deactivate grid lines for x-axis
        return alt.Axis(tickMinStep=1, grid=grid)

    return alt.Axis(grid=grid)


def _maybe_melt(
    df: pd.DataFrame,
    x_column: str | None,
    y_column_list: list[str],
    color_column: str | None,
    size_column: str | None,
) -> tuple[pd.DataFrame, str | None, str | None]:
    """If multiple columns are set for y, melt the dataframe into long format."""
    y_column: str | None

    if len(y_column_list) == 0:
        y_column = None
    elif len(y_column_list) == 1:
        y_column = y_column_list[0]
    elif x_column is not None:
        # Pick column names that are unlikely to collide with user-given names.
        y_column = _MELTED_Y_COLUMN_NAME
        color_column = _MELTED_COLOR_COLUMN_NAME

        columns_to_leave_alone = [x_column]
        if size_column:
            columns_to_leave_alone.append(size_column)

        df = _melt_data(
            df=df,
            columns_to_leave_alone=columns_to_leave_alone,
            columns_to_melt=y_column_list,
            new_y_column_name=y_column,
            new_color_column_name=color_column,
        )

    return df, y_column, color_column


def _get_axis_encodings(
    df: pd.DataFrame,
    chart_type: ChartType,
    x_column: str | None,
    y_column: str | None,
    x_from_user: str | None,
    y_from_user: str | Sequence[str] | None,
    x_axis_label: str | None,
    y_axis_label: str | None,
    stack: bool | ChartStackType | None,
) -> tuple[alt.X, alt.Y]:
    stack_encoding: alt.X | alt.Y
    if chart_type == ChartType.HORIZONTAL_BAR:
        # Handle horizontal bar chart - switches x and y data:
        x_encoding = _get_x_encoding(
            df, y_column, y_from_user, x_axis_label, chart_type
        )
        y_encoding = _get_y_encoding(
            df, x_column, x_from_user, y_axis_label, chart_type
        )
        stack_encoding = x_encoding
    else:
        x_encoding = _get_x_encoding(
            df, x_column, x_from_user, x_axis_label, chart_type
        )
        y_encoding = _get_y_encoding(
            df, y_column, y_from_user, y_axis_label, chart_type
        )
        stack_encoding = y_encoding

    # Handle stacking - only relevant for bar & area charts
    _update_encoding_with_stack(stack, stack_encoding)

    return x_encoding, y_encoding


def _get_x_encoding(
    df: pd.DataFrame,
    x_column: str | None,
    x_from_user: str | Sequence[str] | None,
    x_axis_label: str | None,
    chart_type: ChartType,
) -> alt.X:
    import altair as alt

    if x_column is None:
        # If no field is specified, the full axis disappears when no data is present.
        # Maybe a bug in vega-lite? So we pass a field that doesn't exist.
        x_field = _NON_EXISTENT_COLUMN_NAME
        x_title = ""
    elif x_column == _SEPARATED_INDEX_COLUMN_NAME:
        # If the x column name is the crazy anti-collision name we gave it, then need to set
        # up a title so we never show the crazy name to the user.
        x_field = x_column
        # Don't show a label in the x axis (not even a nice label like
        # SEPARATED_INDEX_COLUMN_TITLE) when we pull the x axis from the index.
        x_title = ""
    else:
        x_field = x_column

        # Only show a label in the x axis if the user passed a column explicitly. We
        # could go either way here, but I'm keeping this to avoid breaking the existing
        # behavior.
        if x_from_user is None:
            x_title = ""
        else:
            x_title = x_column

    # User specified x-axis label takes precedence
    if x_axis_label is not None:
        x_title = x_axis_label

    # grid lines on x axis for horizontal bar charts only
    grid = True if chart_type == ChartType.HORIZONTAL_BAR else False

    return alt.X(
        x_field,
        title=x_title,
        type=_get_x_encoding_type(df, chart_type, x_column),
        scale=alt.Scale(),
        axis=_get_axis_config(df, x_column, grid=grid),
    )


def _get_y_encoding(
    df: pd.DataFrame,
    y_column: str | None,
    y_from_user: str | Sequence[str] | None,
    y_axis_label: str | None,
    chart_type: ChartType,
) -> alt.Y:
    import altair as alt

    if y_column is None:
        # If no field is specified, the full axis disappears when no data is present.
        # Maybe a bug in vega-lite? So we pass a field that doesn't exist.
        y_field = _NON_EXISTENT_COLUMN_NAME
        y_title = ""
    elif y_column == _MELTED_Y_COLUMN_NAME:
        # If the y column name is the crazy anti-collision name we gave it, then need to set
        # up a title so we never show the crazy name to the user.
        y_field = y_column
        # Don't show a label in the y axis (not even a nice label like
        # MELTED_Y_COLUMN_TITLE) when we pull the x axis from the index.
        y_title = ""
    else:
        y_field = y_column

        # Only show a label in the y axis if the user passed a column explicitly. We
        # could go either way here, but I'm keeping this to avoid breaking the existing
        # behavior.
        if y_from_user is None:
            y_title = ""
        else:
            y_title = y_column

    # User specified y-axis label takes precedence
    if y_axis_label is not None:
        y_title = y_axis_label

    # grid lines on y axis for all charts except horizontal bar charts
    grid = False if chart_type == ChartType.HORIZONTAL_BAR else True

    return alt.Y(
        field=y_field,
        title=y_title,
        type=_get_y_encoding_type(df, chart_type, y_column),
        scale=alt.Scale(),
        axis=_get_axis_config(df, y_column, grid=grid),
    )


def _update_encoding_with_stack(
    stack: bool | ChartStackType | None,
    encoding: alt.X | alt.Y,
) -> None:
    if stack is None:
        return None
    # Our layered option maps to vega's stack=False option
    elif stack == "layered":
        stack = False

    encoding["stack"] = stack


def _get_color_encoding(
    df: pd.DataFrame,
    color_value: Color | None,
    color_column: str | None,
    y_column_list: list[str],
    color_from_user: str | Color | list[Color] | None,
) -> alt.Color | alt.ColorValue | None:
    import altair as alt

    has_color_value = color_value not in [None, [], ()]  # type: ignore[comparison-overlap]

    # If user passed a color value, that should win over colors coming from the
    # color column (be they manual or auto-assigned due to melting)
    if has_color_value:
        # If the color value is color-like, return that.
        if is_color_like(cast(Any, color_value)):
            if len(y_column_list) != 1:
                raise StreamlitColorLengthError([color_value], y_column_list)

            return alt.ColorValue(to_css_color(cast(Any, color_value)))

        # If the color value is a list of colors of approriate length, return that.
        elif isinstance(color_value, (list, tuple)):
            color_values = cast(Collection[Color], color_value)

            if len(color_values) != len(y_column_list):
                raise StreamlitColorLengthError(color_values, y_column_list)

            if len(color_values) == 1:
                return alt.ColorValue(to_css_color(cast(Any, color_value[0])))
            else:
                return alt.Color(
                    field=color_column
                    if color_column is not None
                    else alt.utils.Undefined,
                    scale=alt.Scale(range=[to_css_color(c) for c in color_values]),
                    legend=_COLOR_LEGEND_SETTINGS,
                    type="nominal",
                    title=" ",
                )

        raise StreamlitInvalidColorError(df, color_from_user)

    elif color_column is not None:
        column_type: VegaLiteType

        if color_column == _MELTED_COLOR_COLUMN_NAME:
            column_type = "nominal"
        else:
            column_type = _infer_vegalite_type(df[color_column])

        color_enc = alt.Color(
            field=color_column, legend=_COLOR_LEGEND_SETTINGS, type=column_type
        )

        # Fix title if DF was melted
        if color_column == _MELTED_COLOR_COLUMN_NAME:
            # This has to contain an empty space, otherwise the
            # full y-axis disappears (maybe a bug in vega-lite)?
            color_enc["title"] = " "

        # If the 0th element in the color column looks like a color, we'll use the color column's
        # values as the colors in our chart.
        elif len(df[color_column]) and is_color_like(df[color_column].iat[0]):
            color_range = [to_css_color(c) for c in df[color_column].unique()]
            color_enc["scale"] = alt.Scale(range=color_range)
            # Don't show the color legend, because it will just show text with the color values,
            # like #f00, #00f, etc, which are not user-readable.
            color_enc["legend"] = None

        # Otherwise, let Vega-Lite auto-assign colors.
        # This codepath is typically reached when the color column contains numbers (in which case
        # Vega-Lite uses a color gradient to represent them) or strings (in which case Vega-Lite
        # assigns one color for each unique value).
        else:
            pass

        return color_enc

    return None


def _get_size_encoding(
    chart_type: ChartType,
    size_column: str | None,
    size_value: str | float | None,
) -> alt.Size | alt.SizeValue | None:
    import altair as alt

    if chart_type == ChartType.SCATTER:
        if size_column is not None:
            return alt.Size(
                size_column,
                legend=_SIZE_LEGEND_SETTINGS,
            )

        elif isinstance(size_value, (float, int)):
            return alt.SizeValue(size_value)
        elif size_value is None:
            return alt.SizeValue(100)
        else:
            raise StreamlitAPIException(
                f"This does not look like a valid size: {repr(size_value)}"
            )

    elif size_column is not None or size_value is not None:
        raise Error(
            f"Chart type {chart_type.name} does not support size argument. "
            "This should never happen!"
        )

    return None


def _get_tooltip_encoding(
    x_column: str,
    y_column: str,
    size_column: str | None,
    color_column: str | None,
    color_enc: alt.Color | alt.ColorValue | None,
) -> list[alt.Tooltip]:
    import altair as alt

    tooltip = []

    # If the x column name is the crazy anti-collision name we gave it, then need to set
    # up a tooltip title so we never show the crazy name to the user.
    if x_column == _SEPARATED_INDEX_COLUMN_NAME:
        tooltip.append(alt.Tooltip(x_column, title=_SEPARATED_INDEX_COLUMN_TITLE))
    else:
        tooltip.append(alt.Tooltip(x_column))

    # If the y column name is the crazy anti-collision name we gave it, then need to set
    # up a tooltip title so we never show the crazy name to the user.
    if y_column == _MELTED_Y_COLUMN_NAME:
        tooltip.append(
            alt.Tooltip(
                y_column,
                title=_MELTED_Y_COLUMN_TITLE,
                type="quantitative",  # Just picked something random. Doesn't really matter!
            )
        )
    else:
        tooltip.append(alt.Tooltip(y_column))

    # If we earlier decided that there should be no color legend, that's because the
    # user passed a color column with actual color values (like "#ff0"), so we should
    # not show the color values in the tooltip.
    if color_column and getattr(color_enc, "legend", True) is not None:
        # Use a human-readable title for the color.
        if color_column == _MELTED_COLOR_COLUMN_NAME:
            tooltip.append(
                alt.Tooltip(
                    color_column,
                    title=_MELTED_COLOR_COLUMN_TITLE,
                    type="nominal",
                )
            )
        else:
            tooltip.append(alt.Tooltip(color_column))

    if size_column:
        tooltip.append(alt.Tooltip(size_column))

    return tooltip


def _get_x_encoding_type(
    df: pd.DataFrame, chart_type: ChartType, x_column: str | None
) -> VegaLiteType:
    if x_column is None:
        return "quantitative"  # Anything. If None, Vega-Lite may hide the axis.

    # Vertical bar charts should have a discrete (ordinal) x-axis, UNLESS type is date/time
    # https://github.com/streamlit/streamlit/pull/2097#issuecomment-714802475
    if chart_type == ChartType.VERTICAL_BAR and not _is_date_column(df, x_column):
        return "ordinal"

    return _infer_vegalite_type(df[x_column])


def _get_y_encoding_type(
    df: pd.DataFrame, chart_type: ChartType, y_column: str | None
) -> VegaLiteType:
    # Horizontal bar charts should have a discrete (ordinal) y-axis, UNLESS type is date/time
    if chart_type == ChartType.HORIZONTAL_BAR and not _is_date_column(df, y_column):
        return "ordinal"

    if y_column:
        return _infer_vegalite_type(df[y_column])

    return "quantitative"  # Pick anything. If undefined, Vega-Lite may hide the axis.


class StreamlitColumnNotFoundError(StreamlitAPIException):
    def __init__(self, df, col_name, *args):
        available_columns = ", ".join(str(c) for c in list(df.columns))
        message = (
            f'Data does not have a column named `"{col_name}"`. '
            f"Available columns are `{available_columns}`"
        )
        super().__init__(message, *args)


class StreamlitInvalidColorError(StreamlitAPIException):
    def __init__(self, df, color_from_user, *args):
        ", ".join(str(c) for c in list(df.columns))
        message = f"""
This does not look like a valid color argument: `{color_from_user}`.

The color argument can be:

* A hex string like "#ffaa00" or "#ffaa0088".
* An RGB or RGBA tuple with the red, green, blue, and alpha
  components specified as ints from 0 to 255 or floats from 0.0 to
  1.0.
* The name of a column.
* Or a list of colors, matching the number of y columns to draw.
        """
        super().__init__(message, *args)


class StreamlitColorLengthError(StreamlitAPIException):
    def __init__(self, color_values, y_column_list, *args):
        message = (
            f"The list of colors `{color_values}` must have the same "
            "length as the list of columns to be colored "
            f"`{y_column_list}`."
        )
        super().__init__(message, *args)
