
    g              	           d Z ddlZ G d de      ZdedefdZdedefd	Zded
edefdZdededej                  eeef   fdZ	dededefdZ
dej                  e   dej                  e   defdZedk(  rddlZ ej                          yy)z/Common functionality shared by several modules.    Nc                   6     e Zd Zddededededdf
 fdZ xZS )	NotRelativePrimeErrorabdmsgreturnNc                 b    t         |   |xs d|||fz         || _        || _        || _        y )Nz.%d and %d are not relatively prime, divider=%i)super__init__r   r   r   )selfr   r   r   r   	__class__s        ?/var/www/openai/venv/lib/python3.12/site-packages/rsa/common.pyr   zNotRelativePrimeError.__init__   s:    \ PTUWXZ[S\ \]    ) )__name__
__module____qualname__intstrr   __classcell__)r   s   @r   r   r      s0    # # # C   r   r   numr	   c                 v    	 | j                         S # t        $ r}t        dt        |       z        |d}~ww xY w)a  
    Number of bits needed to represent a integer excluding any prefix
    0 bits.

    Usage::

        >>> bit_size(1023)
        10
        >>> bit_size(1024)
        11
        >>> bit_size(1025)
        11

    :param num:
        Integer value. If num is 0, returns 0. Only the absolute value of the
        number is considered. Therefore, signed integers will be abs(num)
        before the number's bit length is determined.
    :returns:
        Returns the number of bits in the integer.
    z,bit_size(num) only supports integers, not %rN)
bit_lengthAttributeError	TypeErrortype)r   exs     r   bit_sizer      s?    ,\~~ \FcRSY[[\s    	838numberc                 8    | dk(  ryt        t        |       d      S )a  
    Returns the number of bytes required to hold a specific long number.

    The number of bytes is rounded up.

    Usage::

        >>> byte_size(1 << 1023)
        128
        >>> byte_size((1 << 1024) - 1)
        128
        >>> byte_size(1 << 1024)
        129

    :param number:
        An unsigned integer
    :returns:
        The number of bytes required to hold a specific long number.
    r         )ceil_divr   )r    s    r   	byte_sizer%   8   s     ( {HV$a((r   divc                 2    t        | |      \  }}|r|dz  }|S )av  
    Returns the ceiling function of a division between `num` and `div`.

    Usage::

        >>> ceil_div(100, 7)
        15
        >>> ceil_div(100, 10)
        10
        >>> ceil_div(1, 4)
        1

    :param num: Division's numerator, a number
    :param div: Division's divisor, a number

    :return: Rounded up result of the division between the parameters.
    r"   )divmod)r   r&   quantamods       r   r$   r$   Q   s%    $ c"KFC
!Mr   r   r   c                     d}d}d}d}| }|}|dk7  r&| |z  }|| |z  }} |||z  z
  |}}|||z  z
  |}}|dk7  r&|dk  r||z  }|dk  r||z  }| ||fS )z;Returns a tuple (r, i, j) such that r = gcd(a, b) = ia + jbr   r"    )	r   r   xylxlyoaobqs	            r   extended_gcdr4   i   s     	
A	A	
B	
B	
B	
B
q&FQUA!a%L1B!a%L1B	 q&
 
Av
b	Av
bb"9r   r-   nc                 J    t        | |      \  }}}|dk7  rt        | ||      |S )zReturns the inverse of x % n under multiplication, a.k.a x^-1 (mod n)

    >>> inverse(7, 4)
    3
    >>> (inverse(143, 4) * 143) % 4
    1
    r"   )r4   r   )r-   r5   dividerinv_s        r   inverser:      s2     %Q*Wc1!|#Aq'22Jr   a_valuesmodulo_valuesc                     d}d}|D ]  }||z  }	 t        ||       D ]$  \  }}||z  }t        ||      }|||z  |z  z   |z  }& |S )a  Chinese Remainder Theorem.

    Calculates x such that x = a[i] (mod m[i]) for each i.

    :param a_values: the a-values of the above equation
    :param modulo_values: the m-values of the above equation
    :returns: x such that x = a[i] (mod m[i]) for each i


    >>> crt([2, 3], [3, 5])
    8

    >>> crt([2, 3, 2], [3, 5, 7])
    23

    >>> crt([2, 3, 0], [7, 11, 15])
    135
    r"   r   )zipr:   )	r;   r<   mr-   modulom_ia_iM_ir8   s	            r   crtrD      sk    ( 	
A	A	V   -2
c3hc3sS A%	 3 Hr   __main__)__doc__typing
ValueErrorr   r   r   r%   r$   Tupler4   r:   IterablerD   r   doctesttestmodr,   r   r   <module>rM      s    6 J \# \# \8)c )c )2# C C 0C C FLLc3$? 0s s s " &//#&  vs7K  PS  F zGOO r   