
    gvL              "          d dl mZ d dlZd dlZd dlZd dlmZ d dlm	Z	 d dl
mZ d dlmZmZmZmZmZ d dlmZmZ d dlmZmZmZmZmZ dd	lmZ dd
lmZ ddlm Z m!Z!m"Z" ddl#m$Z$  e!jJ                  e&      Z'dZ( e       r	 d dl)Z(de$de$fdZ-d/dZ.d Z/d Z0	 	 d0de	de1dee2   fdZ3e-	 	 	 	 d1dee4e	f   deee4ef      de1de1deee5e4f      f
d       Z6d2dZ7e"e-dd ddddddddddddd!d"e4dee2   d#e4d$ee1   d%ee4   d&ee4   d'ee4   d(ee1   d)eeee4   e4f      d*eeee4   e4f      d+eeee4   e4f      d,ee4   de1deee5e4f      de1fd-              Z8 G d. de      Z9y# e*$ r d dl+Z,e,jP                  Z(Y w xY w)3    Nwraps)Path)copytree)AnyDictListOptionalUnion)ModelHubMixinsnapshot_download)get_tf_versionis_graphviz_availableis_pydot_availableis_tf_available	yaml_dump   )	constants)HfApi)SoftTemporaryDirectoryloggingvalidate_hf_hub_args)	CallableTfnreturnc                 .     t                fd       }|S )Nc                 f    t        | d      st        dj                   d       | g|i |S )NhistoryzCannot use 'z}': Keras 3.x is not supported. Please save models manually and upload them using `upload_folder` or `huggingface-cli upload`.)hasattrNotImplementedError__name__)modelargskwargsr   s      P/var/www/openai/venv/lib/python3.12/site-packages/huggingface_hub/keras_mixin.py_innerz'_requires_keras_2_model.<locals>._inner+   sH    ui(%r{{m ,r r  %)$)&))    r   )r   r&   s   ` r%   _requires_keras_2_modelr(   )   s     
2Y* * Mr'   c                    g }| j                         D ]g  \  }}|r| d| n|}t        |t        j                        r*|j	                  t        ||      j                                U|j                  ||f       i t        |      S )a  Flatten a nested dictionary.
    Reference: https://stackoverflow.com/a/6027615/10319735

    Args:
        dictionary (`dict`):
            The nested dictionary to be flattened.
        parent_key (`str`):
            The parent key to be prefixed to the children keys.
            Necessary for recursing over the nested dictionary.

    Returns:
        The flattened dictionary.
    .)items
isinstancecollectionsMutableMappingextend_flatten_dictappenddict)
dictionary
parent_keyr+   keyvaluenew_keys         r%   r0   r0   7   s     E &&(
U+5ZL#'3e[778LL %'	 LL'5)* ) ;r'   c                    d}| j                   v| j                   j                         }t        |      }t        j                  j                         j                  |d<   d}|j                         D ]  \  }}|d| d| dz  } |S )z6Parse hyperparameter dictionary into a markdown table.Ntraining_precisionz*| Hyperparameters | Value |
| :-- | :-- |
z| z | z |
)	optimizer
get_configr0   kerasmixed_precisionglobal_policynamer+   )r"   tableoptimizer_paramsr5   r6   s        r%   _create_hyperparameter_tablerB   T   s    E" ??557()9:161F1F1T1T1V1[1[-.>*002JCr#c%--E 3Lr'   c                 Z    t         j                  j                  | | dddddddd 	       y )N
/model.pngFTTB`   )to_fileshow_shapes
show_dtypeshow_layer_namesrankdirexpand_nesteddpilayer_range)r<   utils
plot_model)r"   save_directorys     r%   _plot_networkrR   b   s<    	KK!"*-  
r'   Trepo_dirrP   metadatac                    |dz  }|j                         ryt        |       }|r t               rt               rt	        | |       |i }d|d<   d}|t        |d      z  }|dz  }|dz  }|d	z  }|d
z  }||dz  }|dz  }|dz  }||z  }|dz  }|rAt        j                  j                  | d      r|dz  }|dz  }|dz  }d}|d| dz  }|dz  }|j                  |       y)zd
    Creates a model card for the repository.

    Do not overwrite an existing README.md file.
    z	README.mdNr<   library_namez---
F)default_flow_stylez/
## Model description

More information needed
z9
## Intended uses & limitations

More information needed
z:
## Training and evaluation data

More information needed
z
## Training procedure
z
### Training hyperparameters
z;
The following hyperparameters were used during training:


rD   z
 ## Model Plot
z

<details>z$
<summary>View Model Plot</summary>
z./model.pngz
![Model Image](z)
z
</details>)	existsrB   r   r   rR   r   ospath
write_text)r"   rS   rP   rT   readme_pathhyperparameters
model_cardpath_to_plots           r%   _create_model_cardra   p   s;    [(K259O+-2D2FeX&&H^J)H??J'JGGJQQJRRJ"11
88
VV
o%
d
bggnnz%<=**
m#
>>
$),s;;
n$
:&r'   FrQ   configinclude_optimizertagsc                 *   t         t        d      | j                  st        d      t	        |      }|j                  dd       |rit        |t              st        dt        |       d      |t        j                  z  j                  d      5 }t        j                  ||       ddd       i }t        |t              r||d	<   nt        |t               r|g|d	<   |j#                  d
d      }	|	9t%        j&                  dt(               d	|v r|d	   j+                  |	       n|	g|d	<   | j,                  | j,                  j,                  i k7  rx|dz  }
|
j/                         rt%        j&                  dt0               |
j                  dd      5 }t        j                  | j,                  j,                  |dd       ddd       t3        | |||       t        j4                  j6                  | |fd|i| y# 1 sw Y   TxY w# 1 sw Y   HxY w)aL  
    Saves a Keras model to save_directory in SavedModel format. Use this if
    you're using the Functional or Sequential APIs.

    Args:
        model (`Keras.Model`):
            The [Keras
            model](https://www.tensorflow.org/api_docs/python/tf/keras/Model)
            you'd like to save. The model must be compiled and built.
        save_directory (`str` or `Path`):
            Specify directory in which you want to save the Keras model.
        config (`dict`, *optional*):
            Configuration object to be saved alongside the model weights.
        include_optimizer(`bool`, *optional*, defaults to `False`):
            Whether or not to include optimizer in serialization.
        plot_model (`bool`, *optional*, defaults to `True`):
            Setting this to `True` will plot the model and put it in the model
            card. Requires graphviz and pydot to be installed.
        tags (Union[`str`,`list`], *optional*):
            List of tags that are related to model or string of a single tag. See example tags
            [here](https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1).
        model_save_kwargs(`dict`, *optional*):
            model_save_kwargs will be passed to
            [`tf.keras.models.save_model()`](https://www.tensorflow.org/api_docs/python/tf/keras/models/save_model).
    Nz>Called a Tensorflow-specific function but could not import it.z+Model should be built before trying to saveT)parentsexist_okzAProvided config to save_pretrained_keras should be a dict. Got: ''wrd   	task_namez>`task_name` input argument is deprecated. Pass `tags` instead.zhistory.jsonzZ`history.json` file already exists, it will be overwritten by the history of this version.zutf-8)encoding   )indent	sort_keysrc   )r<   ImportErrorbuilt
ValueErrorr   mkdirr,   r2   RuntimeErrortyper   CONFIG_NAMEopenjsondumpliststrpopwarningswarnFutureWarningr1   r   rY   UserWarningra   models
save_model)r"   rQ   rb   rc   rP   rd   model_save_kwargsfrT   rj   r[   s              r%   save_pretrained_kerasr      s   F }Z[[;;FGG.)N5 &$'!bcghncobppqrssy444::3?1IIfa  @ H$	D#	 6!%%k48IL	
 XV##I. ){HV}} ==  B&!N2D{{}p 31Q		%--//1M 2 unj(C	LLE>lEVlZklA @?8 21s   G<.H	<H	HKerasModelHubMixinc                  ,    t        j                  | i |S )a
  
    Instantiate a pretrained Keras model from a pre-trained model from the Hub.
    The model is expected to be in `SavedModel` format.

    Args:
        pretrained_model_name_or_path (`str` or `os.PathLike`):
            Can be either:
                - A string, the `model id` of a pretrained model hosted inside a
                  model repo on huggingface.co. Valid model ids can be located
                  at the root-level, like `bert-base-uncased`, or namespaced
                  under a user or organization name, like
                  `dbmdz/bert-base-german-cased`.
                - You can add `revision` by appending `@` at the end of model_id
                  simply like this: `dbmdz/bert-base-german-cased@main` Revision
                  is the specific model version to use. It can be a branch name,
                  a tag name, or a commit id, since we use a git-based system
                  for storing models and other artifacts on huggingface.co, so
                  `revision` can be any identifier allowed by git.
                - A path to a `directory` containing model weights saved using
                  [`~transformers.PreTrainedModel.save_pretrained`], e.g.,
                  `./my_model_directory/`.
                - `None` if you are both providing the configuration and state
                  dictionary (resp. with keyword arguments `config` and
                  `state_dict`).
        force_download (`bool`, *optional*, defaults to `False`):
            Whether to force the (re-)download of the model weights and
            configuration files, overriding the cached versions if they exist.
        proxies (`Dict[str, str]`, *optional*):
            A dictionary of proxy servers to use by protocol or endpoint, e.g.,
            `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The
            proxies are used on each request.
        token (`str` or `bool`, *optional*):
            The token to use as HTTP bearer authorization for remote files. If
            `True`, will use the token generated when running `transformers-cli
            login` (stored in `~/.huggingface`).
        cache_dir (`Union[str, os.PathLike]`, *optional*):
            Path to a directory in which a downloaded pretrained model
            configuration should be cached if the standard cache should not be
            used.
        local_files_only(`bool`, *optional*, defaults to `False`):
            Whether to only look at local files (i.e., do not try to download
            the model).
        model_kwargs (`Dict`, *optional*):
            model_kwargs will be passed to the model during initialization

    <Tip>

    Passing `token=True` is required when you want to use a private
    model.

    </Tip>
    )r   from_pretrained)r#   r$   s     r%   from_pretrained_kerasr      s    j --t>v>>r'   z'Push Keras model using huggingface_hub.)rb   commit_messageprivateapi_endpointtokenbranch	create_prallow_patternsignore_patternsdelete_patternslog_dirrc   rd   rP   repo_idr   r   r   r   r   r   r   r   r   r   c                   t        |      }|j                  |||d      j                  }t               5 }t	        |      |z  }t        | |f||||d| |9|g nt        |t              r|gn|}|j                  d       t        ||dz         |j                  d|||||||	|
|	
      cddd       S # 1 sw Y   yxY w)
a  
    Upload model checkpoint to the Hub.

    Use `allow_patterns` and `ignore_patterns` to precisely filter which files should be pushed to the hub. Use
    `delete_patterns` to delete existing remote files in the same commit. See [`upload_folder`] reference for more
    details.

    Args:
        model (`Keras.Model`):
            The [Keras model](`https://www.tensorflow.org/api_docs/python/tf/keras/Model`) you'd like to push to the
            Hub. The model must be compiled and built.
        repo_id (`str`):
                ID of the repository to push to (example: `"username/my-model"`).
        commit_message (`str`, *optional*, defaults to "Add Keras model"):
            Message to commit while pushing.
        private (`bool`, *optional*):
            Whether the repository created should be private.
            If `None` (default), the repo will be public unless the organization's default is private.
        api_endpoint (`str`, *optional*):
            The API endpoint to use when pushing the model to the hub.
        token (`str`, *optional*):
            The token to use as HTTP bearer authorization for remote files. If
            not set, will use the token set when logging in with
            `huggingface-cli login` (stored in `~/.huggingface`).
        branch (`str`, *optional*):
            The git branch on which to push the model. This defaults to
            the default branch as specified in your repository, which
            defaults to `"main"`.
        create_pr (`boolean`, *optional*):
            Whether or not to create a Pull Request from `branch` with that commit.
            Defaults to `False`.
        config (`dict`, *optional*):
            Configuration object to be saved alongside the model weights.
        allow_patterns (`List[str]` or `str`, *optional*):
            If provided, only files matching at least one pattern are pushed.
        ignore_patterns (`List[str]` or `str`, *optional*):
            If provided, files matching any of the patterns are not pushed.
        delete_patterns (`List[str]` or `str`, *optional*):
            If provided, remote files matching any of the patterns will be deleted from the repo.
        log_dir (`str`, *optional*):
            TensorBoard logging directory to be pushed. The Hub automatically
            hosts and displays a TensorBoard instance if log files are included
            in the repository.
        include_optimizer (`bool`, *optional*, defaults to `False`):
            Whether or not to include optimizer during serialization.
        tags (Union[`list`, `str`], *optional*):
            List of tags that are related to model or string of a single tag. See example tags
            [here](https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1).
        plot_model (`bool`, *optional*, defaults to `True`):
            Setting this to `True` will plot the model and put it in the model
            card. Requires graphviz and pydot to be installed.
        model_save_kwargs(`dict`, *optional*):
            model_save_kwargs will be passed to
            [`tf.keras.models.save_model()`](https://www.tensorflow.org/api_docs/python/tf/keras/models/save_model).

    Returns:
        The url of the commit of your model in the given repository.
    )endpointT)r   r   r   rg   )rb   rc   rd   rP   Nzlogs/*logsr"   )
	repo_typer   folder_pathr   r   revisionr   r   r   r   )r   create_repor   r   r   r   r,   rz   r1   r   upload_folder)r"   r   rb   r   r   r   r   r   r   r   r   r   r   rc   rd   rP   r   apitmp
saved_paths                       r%   push_to_hub_kerasr   (  s    ` 
&CoogUGVZo[ccG 
 	!S#Y(
	
 /!	
  	
  #*  "/37 %%(  ""8,Wj612  "))++ ! 
5 
"	!	!s   A6B66B?c                   @    e Zd ZdZd Ze	 ddeeee	f      fd       Z
y)r   aA  
    Implementation of [`ModelHubMixin`] to provide model Hub upload/download
    capabilities to Keras models.


    ```python
    >>> import tensorflow as tf
    >>> from huggingface_hub import KerasModelHubMixin


    >>> class MyModel(tf.keras.Model, KerasModelHubMixin):
    ...     def __init__(self, **kwargs):
    ...         super().__init__()
    ...         self.config = kwargs.pop("config", None)
    ...         self.dummy_inputs = ...
    ...         self.layer = ...

    ...     def call(self, *args):
    ...         return ...


    >>> # Initialize and compile the model as you normally would
    >>> model = MyModel()
    >>> model.compile(...)
    >>> # Build the graph by training it or passing dummy inputs
    >>> _ = model(model.dummy_inputs)
    >>> # Save model weights to local directory
    >>> model.save_pretrained("my-awesome-model")
    >>> # Push model weights to the Hub
    >>> model.push_to_hub("my-awesome-model")
    >>> # Download and initialize weights from the Hub
    >>> model = MyModel.from_pretrained("username/super-cool-model")
    ```
    c                     t        | |       y N)r   )selfrQ   s     r%   _save_pretrainedz#KerasModelHubMixin._save_pretrained  s    dN3r'   Nrb   c
                     t         t        d      t        j                  j	                  |      st        |||dt                     }n|}t         j                  j                  |      }|	|_	        |S )a   Here we just call [`from_pretrained_keras`] function so both the mixin and
        functional APIs stay in sync.

                TODO - Some args above aren't used since we are calling
                snapshot_download instead of hf_hub_download.
        z>Called a TensorFlow-specific function but could not import it.r<   )r   r   	cache_dirrV   library_version)
r<   ro   rZ   r[   isdirr   r   r   
load_modelrb   )clsmodel_idr   r   force_downloadproxiesresume_downloadlocal_files_onlyr   rb   model_kwargsstorage_folderr"   s                r%   _from_pretrainedz#KerasModelHubMixin._from_pretrained  sn    ( =^__ ww}}X&. !#$ . 0N &N ''7 r'   r   )r!   
__module____qualname____doc__r   classmethodr
   r   rz   r   r    r'   r%   r   r     s=    !F4  ,0( c3h(( (r'   ) )TN)NFTN)r   r   ):collections.abcabcr-   rw   rZ   r|   	functoolsr   pathlibr   shutilr   typingr   r   r	   r
   r   huggingface_hubr   r   huggingface_hub.utilsr   r   r   r   r   r   r   hf_apir   rO   r   r   r   utils._typingr   
get_loggerr!   loggerr<   tf_kerasro   
tensorflowtfr(   r0   rB   rR   boolr2   ra   rz   ry   r   r   r   r   r   r'   r%   <module>r      s   %  	     3 3 <    H H $ 
		H	%
 	 i :" #	)')' )' tn	)'X  (,#'+Pm#t)$Pm T#s(^$Pm 	Pm
 Pm 5s#
$Pm Pmf5?p 
 "C""&  $6:7;7;!#'+#w
w
 TN	w

 w
 d^w
 3-w
 C=w
 SMw
 ~w
 U49c>23w
 eDIsN34w
 eDIsN34w
 c]w
 w
  5s#
$!w
" #w
  w
tP PC  s   E E65E6