
    g(                     
   d dl Z d dlZd dlZddlmZ  ej
                  e      Zd Zedk(  rV e       Z	e	j                  r:e	j                  r.e	j                  r"ej                  d        ej                          e	j                  s.e	j                  r"ej                  d        ej                          ej!                  de	j"                         ej!                  d	e	j$                          ee	j"                  e	j$                  e	j                  e	j                  e	j                  e	j&                  e	j(                  e	j*                  e	j,                  e	j                  e	j.                  e	j0                  e	j2                         yy)
    N   )quant_pre_processc                     t        j                  d      } | j                  ddd       | j                  ddd       | j                  d	t        d
d       | j                  dt        d
d       | j                  dt        d
d       | j                  dddd
       | j                  ddt        d       | j                  dddd
       | j                  ddt        d       | j                  dddd
       | j                  d d!dd
       | j                  d"d#d $       | j                  d%d&t        d'       | j                         S )(Na  Model optimizer and shape inferencer, in preparation for quantization,
Consists of three optional steps:
1. Symbolic shape inference (best for transformer models).
2. Model optimization.
3. ONNX shape inference.

Model quantization with QDQ format, i.e. inserting QuantizeLinear/DeQuantizeLinear on
the tensor, requires tensor shape information to perform its best. Currently, shape inferencing
works best with optimized model. As a result, it is highly recommended to run quantization
on optimized model with shape information. This is the tool for optimization and shape
inferencing.

Essentially this tool performs the following three (skippable) steps:

1. Symbolic shape inference.
2. Model optimization
3. ONNX shape inference)descriptionz--inputTzPath to the input model file)requiredhelpz--outputzPath to the output model filez--skip_optimizationFzSkip model optimization step if true. It's a known issue that ORT optimization has difficulty with model size greater than 2GB, rerun with this option to get around this issue.)typedefaultr   z--skip_onnx_shapezSkip ONNX shape inference. Symbolic shape inference is most effective with transformer based models. Skipping all shape inferences may reduce the effectiveness of quantization, as a tensor with unknown shape can not be quantized.z--skip_symbolic_shapezSkip symbolic shape inference. Symbolic shape inference is most effective with transformer based models. Skipping all shape inferences may reduce the effectiveness of quantization, as a tensor with unknown shape can not be quantized.z--auto_mergez:Automatically merge symbolic dims when confliction happens
store_true)r   actionr
   z	--int_maxzGmaximum value for integer to be treated as boundless for ops like slicei)r   r	   r
   z--guess_output_rankz;guess output rank to be the same as input 0 for unknown opsz	--verbosezHPrints detailed logs of inference, 0: turn off, 1: warnings, 3: detailedr   z--save_as_external_dataz%Saving an ONNX model to external dataz--all_tensors_to_one_filez(Saving all the external data to one filez--external_data_locationz+The file location to save the external file)r   r
   z--external_data_size_thresholdz$The size threshold for external datai   )argparseArgumentParseradd_argumentboolint
parse_args)parsers    X/var/www/openai/venv/lib/python3.12/site-packages/onnxruntime/quantization/preprocess.pyparse_argumentsr      s   $$F( 	D7UV

T8WX
1	   '	   4	   I	   V	   J	   W	   !4	   #7	   ":  
 (3	       __main__z9Skipping all three steps, nothing to be done. Quitting...z:ORT model optimization does not support external data yet!zinput model: %szoutput model: %s)r   loggingsysshape_inferencer   	getLogger__name__loggerr   argsskip_optimizationskip_onnx_shapeskip_symbolic_shapeerrorexitsave_as_external_datainfoinputoutput
auto_mergeint_maxguess_output_rankverboseall_tensors_to_one_fileexternal_data_locationexternal_data_size_threshold r   r   <module>r0      s6     
 .			8	$`F zD$"6"64;S;SPQ
""(B(BQR

KK!4::.
KK"DKK0

  ""$$##)) r   