from __future__ import annotations

from typing import TYPE_CHECKING
from typing import Any
from typing import Generic
from typing import Literal
from typing import Protocol
from typing import Sequence
from typing import TypeVar
from typing import Union

if TYPE_CHECKING:
    import sys

    from narwhals.dtypes import DType
    from narwhals.utils import Implementation

    if sys.version_info >= (3, 10):
        from typing import TypeAlias
    else:
        from typing_extensions import TypeAlias

    from typing_extensions import Self

    from narwhals import dtypes
    from narwhals.dataframe import DataFrame
    from narwhals.dataframe import LazyFrame
    from narwhals.expr import Expr
    from narwhals.series import Series

    # All dataframes supported by Narwhals have a
    # `columns` property. Their similarities don't extend
    # _that_ much further unfortunately...
    class NativeFrame(Protocol):
        @property
        def columns(self) -> Any: ...

        def join(self, *args: Any, **kwargs: Any) -> Any: ...

    class NativeSeries(Protocol):
        def __len__(self) -> int: ...

    class DataFrameLike(Protocol):
        def __dataframe__(self, *args: Any, **kwargs: Any) -> Any: ...


class CompliantSeries(Protocol):
    @property
    def name(self) -> str: ...
    def __narwhals_series__(self) -> CompliantSeries: ...
    def alias(self, name: str) -> Self: ...


class CompliantDataFrame(Protocol):
    def __narwhals_dataframe__(self) -> CompliantDataFrame: ...
    def __narwhals_namespace__(self) -> Any: ...


class CompliantLazyFrame(Protocol):
    def __narwhals_lazyframe__(self) -> CompliantLazyFrame: ...
    def __narwhals_namespace__(self) -> Any: ...


CompliantSeriesT_co = TypeVar(
    "CompliantSeriesT_co", bound=CompliantSeries, covariant=True
)


class CompliantExpr(Protocol, Generic[CompliantSeriesT_co]):
    _implementation: Implementation
    _backend_version: tuple[int, ...]
    _output_names: list[str] | None
    _root_names: list[str] | None
    _depth: int
    _function_name: str
    _kwargs: dict[str, Any]

    def __call__(self, df: Any) -> Sequence[CompliantSeriesT_co]: ...
    def __narwhals_expr__(self) -> None: ...
    def __narwhals_namespace__(self) -> CompliantNamespace[CompliantSeriesT_co]: ...
    def is_null(self) -> Self: ...
    def alias(self, name: str) -> Self: ...
    def cast(self, dtype: DType) -> Self: ...
    def __and__(self, other: Any) -> Self: ...
    def __or__(self, other: Any) -> Self: ...
    def __add__(self, other: Any) -> Self: ...
    def __sub__(self, other: Any) -> Self: ...
    def __mul__(self, other: Any) -> Self: ...
    def __floordiv__(self, other: Any) -> Self: ...
    def __truediv__(self, other: Any) -> Self: ...
    def __mod__(self, other: Any) -> Self: ...
    def __pow__(self, other: Any) -> Self: ...


class CompliantNamespace(Protocol, Generic[CompliantSeriesT_co]):
    def col(self, *column_names: str) -> CompliantExpr[CompliantSeriesT_co]: ...
    def lit(
        self, value: Any, dtype: DType | None
    ) -> CompliantExpr[CompliantSeriesT_co]: ...


IntoExpr: TypeAlias = Union["Expr", str, "Series[Any]"]
"""Anything which can be converted to an expression.

Use this to mean "either a Narwhals expression, or something which can be converted
into one". For example, `exprs` in `DataFrame.select` is typed to accept `IntoExpr`,
as it can either accept a `nw.Expr` (e.g. `df.select(nw.col('a'))`) or a string
which will be interpreted as a `nw.Expr`, e.g. `df.select('a')`.
"""

IntoDataFrame: TypeAlias = Union["NativeFrame", "DataFrame[Any]", "DataFrameLike"]
"""Anything which can be converted to a Narwhals DataFrame.

Use this if your function accepts a narwhalifiable object but doesn't care about its backend.

Examples:
    >>> import narwhals as nw
    >>> from narwhals.typing import IntoDataFrame
    >>> def agnostic_shape(df_native: IntoDataFrame) -> tuple[int, int]:
    ...     df = nw.from_native(df_native, eager_only=True)
    ...     return df.shape
"""

IntoFrame: TypeAlias = Union[
    "NativeFrame", "DataFrame[Any]", "LazyFrame[Any]", "DataFrameLike"
]
"""Anything which can be converted to a Narwhals DataFrame or LazyFrame.

Use this if your function can accept an object which can be converted to either
`nw.DataFrame` or `nw.LazyFrame` and it doesn't care about its backend.

Examples:
    >>> import narwhals as nw
    >>> from narwhals.typing import IntoFrame
    >>> def agnostic_columns(df_native: IntoFrame) -> list[str]:
    ...     df = nw.from_native(df_native)
    ...     return df.collect_schema().names()
"""

Frame: TypeAlias = Union["DataFrame[Any]", "LazyFrame[Any]"]
"""Narwhals DataFrame or Narwhals LazyFrame.

Use this if your function can work with either and your function doesn't care
about its backend.

Examples:
    >>> import narwhals as nw
    >>> from narwhals.typing import Frame
    >>> @nw.narwhalify
    ... def agnostic_columns(df: Frame) -> list[str]:
    ...     return df.columns
"""

IntoSeries: TypeAlias = Union["Series[Any]", "NativeSeries"]
"""Anything which can be converted to a Narwhals Series.

Use this if your function can accept an object which can be converted to `nw.Series`
and it doesn't care about its backend.

Examples:
    >>> from typing import Any
    >>> import narwhals as nw
    >>> from narwhals.typing import IntoSeries
    >>> def agnostic_to_list(s_native: IntoSeries) -> list[Any]:
    ...     s = nw.from_native(s_native)
    ...     return s.to_list()
"""

IntoFrameT = TypeVar("IntoFrameT", bound="IntoFrame")
"""TypeVar bound to object convertible to Narwhals DataFrame or Narwhals LazyFrame.

Use this if your function accepts an object which is convertible to `nw.DataFrame`
or `nw.LazyFrame` and returns an object of the same type.

Examples:
    >>> import narwhals as nw
    >>> from narwhals.typing import IntoFrameT
    >>> def agnostic_func(df_native: IntoFrameT) -> IntoFrameT:
    ...     df = nw.from_native(df_native)
    ...     return df.with_columns(c=nw.col("a") + 1).to_native()
"""

IntoDataFrameT = TypeVar("IntoDataFrameT", bound="IntoDataFrame")
"""TypeVar bound to object convertible to Narwhals DataFrame.

Use this if your function accepts an object which can be converted to `nw.DataFrame`
and returns an object of the same class.

Examples:
    >>> import narwhals as nw
    >>> from narwhals.typing import IntoDataFrameT
    >>> def agnostic_func(df_native: IntoDataFrameT) -> IntoDataFrameT:
    ...     df = nw.from_native(df_native, eager_only=True)
    ...     return df.with_columns(c=df["a"] + 1).to_native()
"""

FrameT = TypeVar("FrameT", bound="Frame")
"""TypeVar bound to Narwhals DataFrame or Narwhals LazyFrame.

Use this if your function accepts either `nw.DataFrame` or `nw.LazyFrame` and returns
an object of the same kind.

Examples:
    >>> import narwhals as nw
    >>> from narwhals.typing import FrameT
    >>> @nw.narwhalify
    ... def agnostic_func(df: FrameT) -> FrameT:
    ...     return df.with_columns(c=nw.col("a") + 1)
"""

DataFrameT = TypeVar("DataFrameT", bound="DataFrame[Any]")
"""TypeVar bound to Narwhals DataFrame.

Use this if your function can accept a Narwhals DataFrame and returns a Narwhals
DataFrame backed by the same backend.

Examples:
    >>> import narwhals as nw
    >>> from narwhals.typing import DataFrameT
    >>> @nw.narwhalify
    >>> def func(df: DataFrameT) -> DataFrameT:
    ...     return df.with_columns(c=df["a"] + 1)
"""

IntoSeriesT = TypeVar("IntoSeriesT", bound="IntoSeries")
"""TypeVar bound to object convertible to Narwhals Series.

Use this if your function accepts an object which can be converted to `nw.Series`
and returns an object of the same class.

Examples:
    >>> import narwhals as nw
    >>> from narwhals.typing import IntoSeriesT
    >>> def agnostic_abs(s_native: IntoSeriesT) -> IntoSeriesT:
    ...     s = nw.from_native(s_native, series_only=True)
    ...     return s.abs().to_native()
"""

SizeUnit: TypeAlias = Literal[
    "b",
    "kb",
    "mb",
    "gb",
    "tb",
    "bytes",
    "kilobytes",
    "megabytes",
    "gigabytes",
    "terabytes",
]


class DTypes:
    Decimal: type[dtypes.Decimal]
    Int128: type[dtypes.Int128]
    Int64: type[dtypes.Int64]
    Int32: type[dtypes.Int32]
    Int16: type[dtypes.Int16]
    Int8: type[dtypes.Int8]
    UInt128: type[dtypes.UInt128]
    UInt64: type[dtypes.UInt64]
    UInt32: type[dtypes.UInt32]
    UInt16: type[dtypes.UInt16]
    UInt8: type[dtypes.UInt8]
    Float64: type[dtypes.Float64]
    Float32: type[dtypes.Float32]
    String: type[dtypes.String]
    Boolean: type[dtypes.Boolean]
    Object: type[dtypes.Object]
    Categorical: type[dtypes.Categorical]
    Enum: type[dtypes.Enum]
    Datetime: type[dtypes.Datetime]
    Duration: type[dtypes.Duration]
    Date: type[dtypes.Date]
    Field: type[dtypes.Field]
    Struct: type[dtypes.Struct]
    List: type[dtypes.List]
    Array: type[dtypes.Array]
    Unknown: type[dtypes.Unknown]


__all__ = [
    "CompliantDataFrame",
    "CompliantLazyFrame",
    "CompliantSeries",
    "DataFrameT",
    "Frame",
    "FrameT",
    "IntoDataFrame",
    "IntoDataFrameT",
    "IntoExpr",
    "IntoFrame",
    "IntoFrameT",
    "IntoSeries",
    "IntoSeriesT",
]
